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Abstract
We study the quantum mechanical magnetic two-centre problem, i.e., quantum
states of an electron within the Coulomb field of two fixed nuclear centres
and a homogeneous magnetic field. From the corresponding nonrelativistic
Schrödinger equation various characteristic properties are derived. These
include the ordering of energy levels and the monotonicity of electronic energies
as a function of the nuclear separation if the internuclear axis is parallel to the
direction of the B field. For such situations we also obtain lower bounds on
the equilibrium separation between the nuclei and establish decay properties
of bound state wavefunctions. Moreover, the molecular virial theorem is
generalized to encompass the contributions from the magnetic field.

PACS numbers: 02.30.Tb, 03.65.Db, 31.10.+z, 33.15.−e

1. Introduction

The hydrogen molecular ion, or, more generally, one electron interacting with two (fixed)
nuclear centres via the Coulomb potential, embodies the simplest molecular system. Therefore
it often serves as the candidate of choice for precise qualitative and quantitative studies of the
molecular bond [1–3]. Also if one considers the effect of external (magnetic, in particular)
fields on molecular binding, this system allows detailed and accurate calculations (see the
recent review [4] and references therein). In fact, the bulk of the theoretical knowledge on
molecules in magnetic fields accumulated so far is based on numerical investigations; rigorous
information usually pertains only to asymptotic regimes, as, e.g., semiclassics or large field
strengths [5–8]. Here, focusing onto the two-centre one-electron system and homogeneous
magnetic fields B, our aim is to demonstrate various rigorous results describing the behaviour
of electronic energies, of potential energy curves (PECs), and of eigenfunctions.
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More specifically, assuming the Born–Oppenheimer (‘clamped nuclei’) approximation
(cf, e.g., [9–11] for a discussion of its validity), in the subsequent section 2 we define
the corresponding nonrelativistic Schrödinger operator H [R, B, Z1, Z2] that depends on the
internuclear separation (vector) R, the magnetic field B, and the nuclear charges Z1, Z2. The
Hamiltonian H does not include spin, but is equivalent—up to a trivial term—to the Pauli
operator H + σ · B (where σ stands for the collection of Pauli matrices). If R ∧ B = 0, i.e.,
R is parallel to B, the system is invariant under rotations around the internuclear axis and the
associated angular momentum a constant of motion. This leads to reduced Hamilton operators
Hm for each ‘magnetic’quantum number m with the magnetic part of Hm essentially given by
a harmonic oscillator potential. Although for B �= 0 a separation of the remaining two degrees
of freedom in Hm is no longer possible, choosing coordinates along and orthogonal to the field
direction proves to be advantageous for the analysis of these operators. In this context, we
also show the positivity of the lowest eigenfunctions of Hm for each m-sector.

One of the important tools of atomic and molecular theory is the virial theorem, but
apparently it has not yet been extended to atomic or molecular systems in a magnetic field.
To do so, in section 3 we examine the scaling properties of the two-centre Hamiltonians with
respect to their parameters. As a result, a virial theorem emerges that can be regarded as
a combination of the virial formulae for Coulomb and harmonic oscillator systems and that
generalizes the usual molecular virial theorem to the situation B �= 0.

Section 4 is devoted to the problem of level ordering for varying m. For one-electron
atoms it is known [12] that also for nonvanishing (homogeneous) magnetic fields the ground
state occurs for angular momentum m = 0. For one-electron two-centre systems, we show that
a strategy originally put forward by Gross and Stubbe [13] can be adapted and reformulated
with the help of commutators; whence, if one compares corresponding energy levels for |m|
and |m| + 1, we show that the former cannot exceed the latter.

Since in a homogeneous field there are no forces along the direction of B, one may expect
certain related attributes of molecular states to remain valid independent of the presence or
absence of the external field. In particular, for the ground state and B = 0, the electronic curves
have been demonstrated to increase monotonically with growing nuclear separation [14–16].
The monotonic behaviour of the electronic energies for a class of excited states, namely, the
lowest state for each quantum number m, has been established later [17]. In section 5, we
employ the same arguments as in the field-free case to extend this monotonicity also to B �= 0.

The monotonicity of the electronic energies is exploited in section 6 to derive further
properties of the system. We point out immediate consequences for the behaviour of (vertical)
ionization energies, and prove the convergence of a class of electronic curves in the separated
atoms limit (SAL), namely, as |R| → ∞. Furthermore, by a straightforward argument, lower
bounds on the equilibrium separation for the corresponding PECs are deduced and compared
with asymptotic (large |B|) results [8] and numerical data [18].

Decay of bound state wavefunctions is the subject of section 7. Invoking standard methods
(Combes–Thomas [19], Agmon [20]), we show that the transversal decay is governed by the
behaviour of the Landau orbital, whereas along the field direction the decay characteristics are
the same as for molecular wavefunctions without magnetic field.

Finally, various concluding remarks are collected in section 8.

2. Basic properties of the magnetic Hamiltonian

Assuming static nuclei with charges Z1, Z2 � 0, we consider the Hamiltonian
H [R, B, Z1, Z2] = h[R, B, Z1, Z2] + Z1Z2/R where for a homogeneous magnetic field B the
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electronic part h of H is determined by

h[R, B, Z1, Z2] = 1
2 p2 + 1

2 B · L + 1
8B2r2

⊥ + V (R, Z1, Z2). (1)

Here, L = r ∧ p stands for the usual angular momentum operator, and r⊥ is the component of
r orthogonal to B, namely, r2

⊥ = r2 − (B · r)2/B2. The potential V describes the interaction
between the electron and the nuclei at positions 0 and R,

V [R, Z1, Z2] = −Z1

|r| − Z2

|r − R| . (2)

If the nuclear axis is oriented along the direction of the field, i.e., R ∧ B = 0, the
system enjoys symmetry C∞v (or D∞h, if Z1 = Z2), and the angular motion can be
separated from the remaining two degrees of freedom for the electron. To this end, taking
B = (0, 0, B), R = (0, 0, R), the usual cylindrical coordinates (ρ, ζ, ϕ) are introduced by the
diffeomorphism �cy : � × S1 := (0,∞) × (−∞,∞) × [0, 2π) −→ R

3\{(0, 0, z)|z ∈ R}
defined by �cy(ρ, ζ, ϕ) = (ρ cos(ϕ), ρ sin(ϕ), ζ ). The map �cy induces the unitary
transformation

Ucy : L2(R3) → L2(�, dω) ⊗ L2(S1), ψ1 �→ ψ2 = Ucyψ1 := ψ1 ◦ �cy, (3)

between the Hilbert spaces L2(R3) and L2(�, dω)⊗L2(S1, dϕ) with measure dω = ρ dρ dζ .
The Hamiltonian h is then unitarily transformed into

hcy := UcyhU−1
cy = h⊥ + h‖ − 1

2ρ2

∂2

∂ϕ2
+

i

2
B

∂

∂ϕ
+

1

8
B2ρ2 + v, (4)

where we use the notation h⊥ = − 1
2ρ−1 ∂

∂ρ
ρ ∂

∂ρ
, h‖ = − 1

2
∂2

∂ζ 2 , and

v[R,Z1, Z2] = − Z1√
ρ2 + ζ 2

− Z2√
ρ2 + (ζ − R)2

. (5)

Decomposing L2(�, dω)⊗L2(S1) = ⊕
m∈Z

L2(�, dω)⊗L(Ym) with L(Ym) being the linear
span of the angular momentum eigenfunctions Ym(ϕ) = exp(imϕ), the Hamiltonian is reduced
on each eigenspace of fixed angular momentum m ∈ Z around the internuclear axis

hcy =
⊕
m∈Z

h(m)
cy =

⊕
m∈Z

(
h⊥ +

m2

2ρ2
+ h‖ − m

2
B +

1

8
B2ρ2 + v

)
. (6)

For the subsequent discussion it will be convenient to single out the magnetic part of the
Hamiltonian,

h(m)
cy = h(m)

mag + v, h(m)
mag[B] = h

(m)
⊥ + h‖ − m

2
B +

1

8
B2ρ2, h

(m)
⊥ = h⊥ +

m2

2ρ2
. (7)

Obviously, h(m)
mag[B] models a harmonic oscillator in ρ and free motion in ζ direction. The

essential selfadjointness of h(m)
mag[0] on appropriate domainsDm ⊗ C∞

0 (R) (withDm ⊂ C∞(R+)

has been established in [17]. These results can be extended to h(m)
mag[B] for nonvanishing B

by standard methods; moreover, using that h(m)
mag[B] induces a finer topology than h(m)

mag[0]
for the graph norm, the relative compactness of v ∈ L2(�, dω) + L∞

ε (�) and thus the
essential selfadjointness of h(m)

cy on Dm ⊗ C∞
0 (R) follow. The ground state energies em and

wavefunctions φm of h(m)
cy enjoy a particular property:

Theorem 2.1. The ground state wavefunction of h(m)
cy is strictly positive, φm(ρ, ζ ) > 0 for all

ρ > 0,−∞ < ζ < ∞, and the ground state energy em nondegenerate.
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Whereas sometimes the positivity of φm is alluded to a ‘generalized Frobenius Perron
theorem’, the actual proof involves several steps and apparently has not yet been documented
in the literature. First, we generalize Kato’s inequality (theorem X.27 in [21]) to the kinetic
part of h(m)

cy , i.e., show that that in distributional sense(
−ρ−1 ∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂ζ 2

)
|φ| � −Re

{
sgn(φ)

(
−ρ−1 ∂

∂ρ
ρ

∂

∂ρ
− ∂2

∂ζ 2

)
φ

}
, (8)

where sgn(φ) = 0 if φ(ρ, ζ ) = 0, and sgn(φ) = φ(ρ, ζ )/|φ(ρ, ζ )| otherwise. Hence,
the condition

〈|φ|, h(m)
mag|φ|〉 �

〈
φ, h(m)

magφ
〉

for the first Beurling–Deny criterion (theorem
XIII.50 in [22]) is satisfied; as a consequence, the semigroup exp

(−th(m)
mag

)
, t > 0, is

positivity preserving, that is, φ � 0 a.e. implies exp
(−th(m)

mag

)
φ � 0 a.e. Moreover,{

exp
(−th(m)

mag

)}∪L∞(L2) acts irreducibly, i.e., only the trivial closed subspaces of L2(�, dω)

are left invariant by exp
(−th(m)

mag

)
and all bounded operators. This can be deduced by the same

reasoning as in theorem XIII.43 of [22] from the ergodicity, i.e.,
〈
ψ, exp

(−sh(m)
mag

)
φ
〉 �= 0 for

all positive ψ, φ ∈ L2(�, dω) and some s > 0. The latter, in turn, can be seen by employing
the Trotter formula and the respective properties of the kernels of the resulting factors. Next,
we approximate the potential v by the bounded operators

vn(ρ, ζ ) :=
{−n if v(ρ, ζ ) < −n,

v(ρ, ζ ) otherwise.
(9)

Easy estimates of 〈φ, |v − vn|φ〉 for φ ∈ D
(
h(m)

mag

) = D
(
h(m)

cy

)
and theorem VIII.25 in [23]

prove the convergence in norm resolvent sense h(m)
mag + vn → h(m)

cy and h(m)
cy − vn → h(m)

mag

for n → ∞. Whence, by theorem XIII.45 of [22], the facts that exp
(−th(m)

mag

)
is positivity

preserving and
{
exp

(−th(m)
mag

)} ∪ L∞(L2) acts irreducibly are inherited to exp
(−th(m)

cy

)
. This

eventually allows us to deduce the strict positivity of φm and nondegeneracy of em from
theorems XIII.44 and 45 of [22].

3. Scaling and the virial theorem

To investigate the scaling properties of the magnetic two-centre Hamiltonian we resort to the
unitary map (‘dilation’) Ua : L2(R3) → L2(R3) given by Uaψ(r) = a−3/2ψ(ar) for all
a ∈ R

+. With R̂ = R/R standing for the unit vector along the internuclear axis, the scaling in
R produces

URhU−1
R = R−2

(
−1

2
 +

1

2
R2B · L +

1

8
R4B2r2

⊥ − RZ1

|r| − RZ2

|r − R̂|

)
. (10)

For the electronic energies this implies e[R, B, Z1, Z2] = R−2e[R̂, R2B, RZ1, RZ2].
Furthermore, equation (10) leads to a molecular virial theorem in the following way. If
ψ is any eigenstate of h, then ψ̃ = URψ is an eigenstate of the transformed operator URhU−1

R .
Therefore we can apply the Feynman–Hellman theorem for the derivative (in the direction of
R̂) of the corresponding energy e

de

dR
=
〈
ψ̃,

(
d

dR
URhU−1

R

)
ψ̃

〉
. (11)

The derivative of the operator is calculated with the help of (10)

d

dR
URhU−1

R = −2R−1URhU−1
R + R−1UR

(
2

2
B · L +

4

8
B2r2

⊥ − Z1

r
− Z2

|r − R|
)

U−1
R , (12)
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so that

R
de

dR
= −2e +

〈
ψ,

(
B · L +

1

2
B2r2

⊥ − Z1

r
− Z2

|r − R|
)

ψ

〉
. (13)

Denoting expectation values with respect to ψ by

〈T 〉 =
〈
ψ,−1

2
ψ

〉
, 〈V 〉 =

〈
ψ,

(
−Z1

r
− Z2

|r − R|
)

ψ

〉
, (14)

equation (13) can equivalently be expressed by the two versions below

R
de

dR
= −2e + 〈B · L〉 +

1

2
B2

〈
r2
⊥
〉
+ 〈V 〉

= −e − 〈T 〉 +
1

2
〈B · L〉 +

3

8
B2〈r2

⊥
〉
. (15)

In addition, we may reformulate (15) for potential energy curves (PECs), namely, for the
energies E = e + Z1Z2/R of the total Hamiltonian H,

R
dE

dR
= −2E + 〈B · L〉 +

1

2
B2

〈
r2
⊥
〉
+ 〈Vtot〉 +

Z1Z2

R

= −E − 〈T 〉 +
1

2
〈B · L〉 +

3

8
B2

〈
r2
⊥
〉
, (16)

where the total potential Vtot = V + Z1Z2
R

includes the nuclear repulsion. At equilibrium
positions Re determined by dE

dR
[Re, B,Z1, Z2] = 0, the virial relation (16) yields

2〈T 〉 = −〈Vtot〉 − Z1Z2

Re

+
1

4
B2

〈
r2
⊥
〉
. (17)

We summarize our findings into the molecular virial theorem (that reduces to the usual one
[24] if B = 0).

Theorem 3.1. For R > 0, the electronic curves e[R,B,Z1, Z2] and PECs E[R,B,Z1, Z2]
obey equations (15) and (16), respectively. At molecular equilibria, the balance between
kinetic and potential parts of the energy is described by equation (17). In the case of C∞v or
D∞h symmetry, all these relations also hold for the reduced operators h(m)

cy and energies em

or Em, respectively, where V is replaced by v and 〈B · L〉 becomes mB.

The transformation in equation (10) corresponds to the scaling r �→ Rr. With B̂ = B/|B|
denoting the unit vector in field direction, we also can scale r �→ B−1/2r to obtain

U1/
√

BhU−1
1/

√
B

= B

(
−1

2
 +

1

2
B̂ · L +

1

8
r2
⊥ − B−1/2Z1

|r| − B−1/2Z2

|r − B1/2R|
)

(18)

and e[R, B, Z1, Z2] = Be[
√

BR, B̂, Z1/
√

B,Z2/
√

B] for the electronic energies. The
expression in (18) indicates that the molecular interaction gets ever weaker in the Landau
regime, namely, for large B. Moreover, we can follow the same procedure as above to derive
an equation for B de/dB. But since de/dB = 〈B̂ · L〉/2 + B

〈
r2
⊥
〉/

4, it turns out that the
resulting relation is identical to equation (15). Thus only for R = 0 this path leads to a new
result, namely to an extension of the virial theorem to the atomic situation

2〈T 〉 = −〈V 〉 + 1
4B2

〈
r2
⊥
〉
. (19)

Finally, it is also possible to use the charge parameters for scaling. Taking, e.g., Z1, the
scaling r �→ Z−1

1 r transforms the operator into

U1/Z1hU−1
1/Z1

= Z2
1

(
−1

2
 +

1

2
Z−2

1 B · L +
1

8

(
Z−2

1 B
)2

r2
⊥ − 1

|r| − Z−1
1 Z2

|r − Z1R|

)
. (20)
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Consequently, the electronic energies obey e[R, B, Z1, Z2] = Z2
1e
[
Z1R, B

/
Z2

1, 1, Z2/Z1
]
.

For atomic systems, this reduces to the well-known behaviour e[0, B, Z, 0] =
Z2e[0, B/Z2, 1, 0].

4. Level ordering

Since for vanishing magnetic field the Hamiltonians obey the operator inequality

h(|m|+1)
cy [R, 0, Z1, Z2] > h(|m|)

cy [R, 0, Z1, Z2] = h(−|m|)
cy [R, 0, Z1, Z2], (21)

the min–max principle implies the same ordering for the spectra of these operators. Physically,
one may expect that, at least for the ground state energies em, the relation

e|m|+1[R,B,Z1, Z2] > e|m|[R,B,Z1, Z2] (22)

continues to hold also for nonzero B. In the UAL, namely, for R = 0, this is known to be true
[12]. The proof given in the atomic case, however, requires monotonicity of the potential v

also in |ζ | and thus cannot be extended to R > 0 (cf [9] for an example where the ground state
occurs for m �= 0). On the other hand, one can infer the ordering (22) for molecular levels from
trivial extensions (to potentials with singularities at the nuclear positions) of results by Grosse
and Stubbe [13]. Falling back onto commutator methods, below we succeed in simplifying
and shortening Grosse and Stubbe’s original proof.

Theorem 4.1. For the lowest eigenvalues em of the operators h(m)
cy in (6) to satisfy inequality

(22), it is sufficient that the potential v increases in the direction orthogonal to B, i.e.,
∂V/∂ρ � 0. In particular, the lowest energies of the Hamiltonian hcy occur for m = 0.

To prove this theorem, we first note that due to e−|m| = e|m| + |m|B we only need to
consider m � 0. Furthermore, setting h̃cy = hcy − (i/2)B∂/∂ϕ, both operators have identical
eigenfunctions ψm with corresponding eigenvalues related by

hcyψm = emψm =
(

h̃cy +
i

2
B

∂

∂ϕ

)
ψm =

(
ẽm − m

2
B
)

ψm. (23)

The computation of the commutators[
h̃cy, cos ϕ

∂

∂ρ
− ρ−1 sin ϕ

∂

∂ϕ

]
= −cos ϕ

(
1

4
B2ρ +

∂v

∂ρ

)
(24)

and

[h̃cy, ρ cos ϕ] = −
(

cos ϕ
∂

∂ρ
− ρ−1 sin ϕ

∂

∂ϕ

)
(25)

is straightforward; they are well defined on eigenfunctions, whence we can evaluate them
between ψm+1 and ψm. Upon combining, we immediately arrive at

(ẽm+1 − ẽm)2〈ψm+1, ρ cos ϕψm〉 =
〈
ψm+1, cos ϕ

(
1

4
B2ρ +

∂v

∂ρ

)
ψm

〉
. (26)

After expressing the ψm = exp(imϕ)φm in terms of the eigenfunctions φm of h(m)
cy , integrating

over ϕ, and employing (23), the equation (26) is cast into

(em+1 − em)(em+1 − em + B)〈φm+1, ρφm〉 =
〈
φm+1,

∂v

∂ρ
φm

〉
. (27)
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The lower bound

em+1 = 〈
φm+1, h

(m+1)
cy φm+1

〉 = 〈
φm+1,

(
h(m)

cy +
2m + 1

ρ2
− B

2

)
φm+1

〉

� em +

〈
φm+1,

2m + 1

ρ2
φm+1

〉
− B

2
(28)

follows from the variational principle and shows that em+1 − em + B/2 > 0. Since for the
potential v in (5) ∂v/∂ρ � 0 for all ρ, ζ and 〈φm+1, ρφm〉 > 0 due to the positivity of the
ground state eigenfunctions, we conclude from equation (27) that em+1 − em > 0.

5. Monotonicity in R

Before demonstrating the monotonicity of the electronic curves em, we show that not only for
B = 0 [24], but also for B �= 0 the molecular energies cannot drop below the UAL energy of
the ground state.

Theorem 5.1. All (ground state or excited state) energies ê[R, B, Z1, Z2] of the electronic
Hamiltonian h are bounded below by the UAL ground state energy, ê[R, B, Z1, Z2] �
e[0, B, Z1, Z2]. If the system enjoys symmetry C∞v or D∞h, then within each angular
momentum sector the UAL energies em[0, B,Z1, Z2] provide lower bounds on all other
energies êm[R,B,Z1, Z2] of the reduced operator h(m)

cy .

These bounds follow directly from the translational invariance of the kinetic energy
and the min–max principle. Namely, if U t

aψ(r) := ψ(r − a) stands for the unitary
translation operator by a ∈ R

3, then we can write h[R, B, Z1, Z2] = 1
2h[0, B, Z1, Z2] +

1
2U t

Rh[0, B, Z1, Z2]
(
U t

R

)−1
. By the min–max principle for the spectrum σ(h) of h,

ê[R, B, Z1, Z2] � inf{σ(h[R, B, Z1, Z2])} � 1
2 inf{σ(h[0, B, Z1, Z2])}

+ 1
2 inf

{
σ
(
U t

Rh[0, B, Z1, Z2]
(
U t

R

)−1)} = e[0, B, Z1, Z2]. (29)

Since the same arguments apply for the reduced energies em, theorem 5.1 is proved.
Stronger results can be derived for the lowest energies em within each angular momentum

sector for C∞v or D∞h symmetries. To do so, namely, to establish the monotonic increase of
em with growing R, we may adhere to the same strategy as in [17]. Nonetheless, below we
include the essential steps to keep the presentation selfcontained, and, also, to take advantage
of some slight simplifications as compared to the original proof. Our starting point is the
kernel of the semigroup for t > 0

Kt(ρ, ζ, ρ ′, ζ ′) = e−th
(m)
cy (ρ, ζ ; ρ ′, ζ ′). (30)

Decomposing the Hamiltonian as h(m)
cy = h(m)

mag[0] + W(m) where now W(m) also contains
the terms with B, in order to utilize the Trotter formula we need to regularize the Coulomb
singularity in W(m). Thus, after introducing

W(m)
ε (ρ, ζ ) = −m

2
B +

1

8
B2ρ2− Z1√

ρ2 + ζ 2 + ε2
− Z2√

ρ2 + (ζ − R)2 + ε2
(31)

we can express the semigroup by an infinite product

e−th
(m)
cy = lim

ε→0
lim

n→∞
(
e− t

n
h

(m)
mag[0] e− t

n
W(m)

ε

)n = lim
ε→0

lim
n→∞

(
e− t

n
h

(m)
⊥ e− t

n
h‖ e− t

n
W(m)

ε

)n
(32)
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As in [16], the Coulomb potential is represented by the Laplace transform of a positive measure
dµ

e
t
n
Z1

√
ρ2+ζ 2+ε2 =

∫
dµ

(
τ ; t

n
Z1

)
e−τ(ρ2+ζ 2ε2) =

∫
dµε

(
τ ; t

n
Z1

)
e−τ(ρ2+ζ 2) (33)

where dµε = exp(−ε2) dµ, and where, of course, an analogous formula holds
for the term with Z2 in (31). The kernel of exp

(− t
n
h‖
)

is Gaussian,
exp

(− t
n
h‖
)
(ζ, ζ ′) = (4πt/n)−1/2 exp(−n(ζ − ζ ′)2/(4t)), and the other kinetic contribution

obeys exp
(− t

n
h

(m)
⊥

)
(ρ, ρ ′) � 0 [17]. Whence, upon insertion, the nth approximation for the

kernel of the (regularized) semigroup assumes the form

K
(ε,n)
t (ρ, ζ, ρ ′, ζ ′) =

∫ n−1∏
i=1

dρi

∫ n−1∏
j=1

dζj

∫ n∏
k=1

dµε

(
τk; t

n
Z1

)

×
∫ 2n∏

l=n+1

dµε

(
τl; t

n
Z2

)
F

(n)
t ({ρ}, {τ })G(ε,n)

t ({ζ }, {τ }). (34)

Here, {ρ} = ρ, ρ1, . . . ρn−1, ρ
′, {ζ } = ζ, ζ1, . . . ζn−1, ζ

′, and {τ } stands for the collection of
τi, i = 1, . . . , 2n. The function F

(n)
t in (34)

F
(n)
t ({ρ}, {τ }) = e− t

n
h

(m)
⊥ (ρ, ρ1)

n−2∏
i=1

e−τi,nρ
2
i e− t

n
h

(m)
⊥ (ρi, ρi+1)

× e−τn−1,nρ
2
i e− t

n
h

(m)
⊥ (ρn−1, ρ

′) e−τn,nρ
2
i � 0 (35)

with τi,n = τi + τn+i + B2/8 embodies the degrees of freedom orthogonal to the internuclear
axis. The ‘parallel’ function G

(ε,n)
t in (34)

G
(ε,n)
t ({ζ }, {τ }) =

(
4πt

n

)−n/2

exp

{
− n

4t

(
(ζ − ζ1)

2 +
n−2∑
i=1

(ζi − ζi+1)
2 + (ζn−1 − ζ ′)2

−
n−1∑
i=1

τiζ
2
i − τn(ζ

′)2 −
2n−1∑
i=n+1

τi(ζi − R)2 − τ2n(ζ
′ − R)2

)}
(36)

can be integrated explicitly. The expression in (36) relevant for the integral over ζ1 reads∫
dζ1 exp

(−a(ζ − ζ1)
2 − b(ζ1 − ζ2)

2 − cζ 2
1 − d(ζ1 − R)2

) =
√

π

S

× exp
{−S−1

(
csR2 + ad(ζ − R)2 + acζ 2 + ab(ζ − ζ2)

2

+ bd(ζ − R)2 + bcζ 2
2

)}
, (37)

where S = a + b + c + d. Combining the right-hand side of (37) with the terms in (36) that
contain ζ2 leads to an integral over ζ2 of the same form as on the left-hand side of (37) (with
ζ1 replaced by ζ2, and ζ2 by ζ3, and where of course the coefficients a, b, c, d have changed).
Therefore we can proceed successively to arrive eventually at∫ n−1∏

i=1

dζiG
(ε,n)
t ({ζ }, {τ }) = c0 exp{−c1R

2 − c2(ζ − R)2 − c3ζ
2

− c4(ζ − ζ ′)2 − c4(ζ
′ − R)2 − c5(ζ

′)2}, (38)

with all ci > 0 for 0 < τj < ∞. Since

em = inf σ
(
h(m)

cy

) = − lim
t→∞ t−1 ln Kt(ρ, ζ, ρ ′, ζ ′) (39)
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for any ρ, ρ ′ ∈ R
+, ζ, ζ ′ ∈ R, we now may choose, e.g., ζ = ζ ′ = 0, to see that the right-hand

side of (38) is monotonically decreasing in R, which, together with (32), (34) proves the
following theorem.

Theorem 5.2. The lowest energies em within each angular momentum sector are monotonically
increasing in the internuclear separation R, i.e., em[R,B,Z1, Z2] � em[R′, B,Z1, Z2] if
R � R′.

Moreover, by the same arguments an analogous result can be derived for multicentre
systems with C∞v or D∞h symmetry. More precisely, if v[R,Z1, Z2] in (5) is replaced
by v[{R}, {Z}] = −∑N

k=1 Zk/
√

ρ2 − (ζ − Rk)2, with Zk > 0, k = 1, . . . , N , then the
corresponding N-centre electronic energies obey em[{R}, B, {Z}] � em[{R′}, B, {Z}] if
|Rk − Rj | � |R′

k − R′
j | for all 1 � j < k = 2, . . . , N .

6. Consequences of the monotonicity

Given any electronic curve em[R,B,Z1, Z2], one has to distinguish between the
associated electronic binding energy IPm[R,B,Z1, Z2] and the molecular binding energy
De,m[B,Z1, Z2]. The former, namely, the ionization energy IPm[R,B,Z1, Z2] =
inf σess

(
h(m)

cy [R,B,Z1, Z2]
)− em[R,B,Z1, Z2] is determined by the distance to the threshold

of the continuous spectrum, and, within the Born–Oppenheimer approximation, depends on R.
As already mentioned in section 2, the potential operator v is h(m)

mag[B]-compact; thus we can
infer the equality σess

(
h(m)

cy [R,B,Z1, Z2]
) = σess

(
h(m)

mag[B]
)

with inf σess
(
h(m)

mag[B]
) = B/2.

Consequently, from theorem 5.1 and the preceding discussion the following behaviour of the
ionization energies is obvious.

Corollary 6.1. The ionization energy of the lowest state in each angular momentum sector
decreases monotonically in R and also in the nuclear charge parameters Z1, Z2. It is
bounded by the atomic ionization energies of the UAL and SAL, IPm[∞, B,Z1, Z2] �
IPm[R,B,Z1, Z2] � IPm[0, B,Z1, Z2].

The molecular binding energy, namely, the dissociation energy De,m[B,Z1, Z2] =
e[∞, B,Z1, Z2] − E[Re, B,Z1, Z2] measures the energy difference between the minimum
of the PEC and its asymptotics in the SAL R → ∞. That indeed e[∞, B,Z1, Z2] equals the
hydrogenic energy is established in our next result.

Theorem 6.1. Assume Z1 = max{Z1, Z2}; then in the SAL

lim
R→∞

em[R,B,Z1, Z2] = em[0, B,Z1, 0]. (40)

To prove (40), let φat
m denote the (normed) lowest state wavefunction for the atomic

operator h(m)
cy [0, B,Z1, 0]. By the min–max principle

em[R,B,Z1, Z2] � em[0, B,Z1, 0] −
〈
φat

m,
Z2√

ρ2 + (ζ − R)2
φat

m

〉
� em[0, B,Z1, 0] (41)

and, due to the monotonic increase of em[R,B,Z1, Z2], the limit R → ∞ must exist. Now
a variational test function for h(m)

cy [0, B,Z1, 0] is constructed with the help of the localization
function χ ∈ C1(R),

χR(ζ ) :=




1 if ζ < R/4,

R−3ζ(3R − 4ζ )2 if R/4 � ζ � 3R/4,

0 otherwise

(42)
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so that

em[0, B,Z1, Z2] �
〈
χRφm,

(
h(m)

cy [R,B,Z1, Z2] +
Z2√

ρ2 + (ζ − R)2

)
χRφm

〉/
‖χRφm‖2

(43)

where φm stands for the ground state of h(m)
cy [R,B,Z1, Z2]. In equation (43) the

expectation value for the Hamiltonian can be rewritten as
〈
χRφm, h(m)

cy [R,B,Z1, Z2]χRφm

〉 =
em[R,B,Z1, Z2]‖χRφm‖2 + ‖χ ′

Rφm‖2 + 2〈φm, χRχ ′
Rφm〉, and, after computingχ ′

R = ∂χR/∂ζ ,
we estimate ‖χ ′

Rφm‖2 � 9R−2‖φm‖2 and |〈φm, χRχ ′
Rφm〉| � 3R−1〈φm, χRφm〉. Since for any

fixed R0 > 0 and all R � R0 the norm ‖χRφm‖ is uniformly bounded below by a strictly
positive constant, the estimates above imply〈

χRφm, h(m)
cy [R,B,Z1, Z2]χRφm

〉 = em[R,B,Z1, Z2] + O(R−1). (44)

Similarly,〈
χRφm,

Z2√
ρ2 + (ζ − R)2

χRφm

〉
� sup

0<ρ<∞
−∞<ζ�3R/4

{
Z2√

ρ2 + (ζ − R)2

}
‖χRφm‖2

= 4R−1‖χRφm‖2, (45)

whence em[0, B,Z1, 0] � em[R,B,Z1, Z2] + O(R−1) which, in combination with (41),
proves the theorem.

Having identified the SAL, we can derive a simple lower bound on the position Re of
global minima of the PECs. The stability condition combined with the monotonicity of the
electronic curves yields

em

[
R

(0)
LB, B,Z1, Z2

]
+

Z1Z2

Re

� Em[Re, B,Z1, Z2]

< em[∞, B,Z1, Z2] = em[0, B, max{Z1, Z2}, 0] (46)

for any 0 � R
(0)
LB � Re, and thus leads to an improved lower bound R

(1)
LB on Re

Re > R
(1)
LB = Z1Z2

em[0, B, max{Z1, Z2}, 0] − em

[
R

(0)
LB, B,Z1, Z2

] . (47)

An iteration ending up at

Re � lim
n→∞ R

(n)
LB = lim

n→∞
Z1Z2

em[0, B, max{Z1, Z2}, 0] − em

[
R

(n−1)
LB , B,Z1, Z2

] (48)

appears possible in principle [25]; in practice, however, the energy values (or sufficiently sharp
lower bounds) required at the R

(n)
LB are difficult to calculate. Nonetheless, taking R

(0)
LB = 0, and

focusing onto m � 0, for the first step

R
(1)
LB = Z1Z2

em[0, B, max{Z1, Z2}, 0] − em[0, B,Z1, Z2]
(49)

we can resort onto the known large B asymptotics for hydrogenic energies, e.g., from [12],

em[0, B, 1, 0] = B

2
− 1

2
(log(B))2 + 2 log(B) log(log(B)) − 2(cm + log(2)) log(B)

− 2(log(log(B)))2 + 4(cm − 1 + log(2)) log(log(B)) + O(1) (50)

where Cm = −(γE + qm)/2, with γE = 0.577 215 6649 . . . standing for the Euler constant,
and qm defined recursively by q0 = 0, qm = qm−1 + 1/m if > 0. Restricting to leading
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order in B and invoking the scaling relation (20), for homonuclear systems Z = Z1 = Z2 the
denominator in (49) becomes

em[0, B,Z, 0] − em[0, B, 2Z, 0] = Z2

(
3

2
(log(B))2 − 2(3 log(Z) + 4 log(2)) log(B)

+ 2(3(log(Z))2 + 8 log(2) log(Z) + 4(log(2))2)

)
+ O(log(B) log(log(B)))

= 3

2
Z2(log(B))2 + O(log(B) log(log(B))). (51)

The lower bound resulting from (51) is compatible with the behaviour Re ∝ 1
2 (log(B))−3/2

derived for the ground state m = 0 by approximating the system by a model with point (δ)
interactions [8]. The numerical avail of theses large B expansions, however, is hampered
by their slow convergence. For fields, e.g., B = 104, we obtain from (51) the lower bound
0.012 (or 0.029 if the expansion (50) is employed up to O (log(log(B)))) as compared to
R

(1)
LB = 0.039 from inserting computed hydrogenic energies e0 [18]; the equilibrium separation

extracted from variational [4] or finite elements [18] calculations is Re = 0.119. For B as
huge as 105 (and thus already beyond the domain of the nonrelativistic theory), we find lower
bounds R

(1)
LB of 0.0072 (from (51)), 0.016 (from (50) up to O (log(log(B)))), or 0.022 (from

numerical e0 [18]), confirming that the expansions (50) and (51) are still far from being very
accurate. On the other hand, it may be worth pointing out that the bounds emerging from (51)
hold for all m and not only for the ground state m = 0. Also (51) is not just an upper bound
on the dissociation energy De, but describes precisely the leading order of De for the ground
state (cf equation (15) in [8]).

7. Decay of eigenfunctions

Decay properties of eigenfunctions have been established for a large class of Schrödinger
operators; in particular, it is well known that atomic or molecular bound state wavefunctions
decrease exponentially (pointwise and in L2 sense) for distances sufficiently far away from
the nuclear centres [22, 20]. Apparently, however, this behaviour is less intensely studied
for systems in a magnetic field. Since in the presence of a field nonisotropic effects can be
expected, the Agmon method [20] is certainly best suited for controlling the decay behaviour.
Below, adapting standard arguments of this technique, we demonstrate that, for B �= 0, in the
direction transversal to the B field the two-centre bound state wavefunctions decay even faster,
viz, decrease like Gaussians and the lowest Landau orbital exp(−Bρ2/4). An analogous
result for atoms was derived by Avron, Herbst and Simon [12]; their proof employs stochastic
ingredients (i.e., the Feynman–Kac formula).

Theorem 7.1. Let ψm,k be an eigenfunction (not necessarily the ground state) of h(m)
cy with

eigenvalue em,k . Considering a nonvanishing field B �= 0 and taking δ > 0, we set

ρ0 = 2B−2
(
δ + em,k +

√
(δ + em,k)2 + (Z1 + Z2)B2

)
(52)

and define an ‘Agmon metric’ by

dm,k = max

{
0,

∫ ρ

ρ0

√
2(B2s2/8 − (Z1 + Z2)/s − em,k) ds

}
. (53)

Then for any ε > 0 there exist a constant 0 < cε < ∞ such that

‖e(1−ε)dm,kψm,k‖ � cε. (54)
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The bound (54) implies that in the direction orthogonal to the B field all bound state
wavefunctions decay like a Gaussian, where in leading order the exponent is determined
by (1 − ε)Bρ2/4 in the sense ψm,k ∈ D(exp((1 − ε)Bρ2/4)) for all ε > 0.

To prove (54), we first note that the choice (52) implies vm,k := B2ρ2/8 − (Z1 + Z2)/ρ −
em,k � δ for ρ � ρ0; thus dm,k in (53) is well defined. Denoting Fε(ρ) := (1 − ε)dm,k we
obtain for any φ in the domain of h(m)

cy with supp φ ⊂ [ρ0,∞)

Re
〈
eFεφ,

(
h(m)

cy − em,k

)
e−Fεφ

〉 = Re

〈
φ,

(
h(m)

cy − em,k − 1

2

(
∂Fε

∂ρ

)2)
φ

〉
� Re〈φ, εvm,kφ〉 � εδ‖φ‖2. (55)

The equality in the top line of (55) holds because the expectation value of the sum of the
remaining derivatives of Fε has no nonvanishing real part. Furthermore, in (52) we used
the estimate −(∂Fε/∂ρ)2 � −2(1 − ε)vm,k for ρ � ρ0, the positivity of the kinetic energy,
and bounds like −1/

√
ρ2 + ζ 2 � −1/ρ on the Coulomb terms. Next, we construct a twice

differentiable function χ by

χ(ρ) :=



0 if 0 < ρ < ρ0,

3(ρ − ρ0)
2 − 2(ρ − ρ0)

3 if ρ0 � ρ � ρ0 + 1,

1 if ρ > ρ0 + 1
(56)

so that ∂χ/∂ρ and ∂2χ/∂ρ2 vanish if ρ /∈ (ρ0, ρ0 + 1), while for ρ0 < ρ < ρ0 + 1∣∣∣∣∂χ

∂ρ

∣∣∣∣ � 3

2
and

∣∣∣∣∂2χ

∂ρ2
+ ρ−1 ∂χ

∂ρ

∣∣∣∣ � 6. (57)

Choosing φ = eFεχψm,k , inequality (55) is recast into

Re
〈
e2Fεχψm,k,

(
h(m)

cy − em,k

)
χψm,k

〉
� εδ‖eFεχψm,k‖2. (58)

To derive an upper bound on the left-hand side of (58), we calculate∣∣〈e2Fεχψm,k,
(
h(m)

cy − em,k

)
χψm,k

〉∣∣
=
∣∣∣∣
〈
e2Fεχψm,k,

(
− 1

2ρ

(
∂

∂ρ
ρ

∂χ

∂ρ

)
−
(

∂χ

∂ρ

)
∂

∂ρ

)
ψm,k

〉∣∣∣∣
� 1

2

∣∣∣∣
〈
e2Fεχψm,k,

∣∣∣∣ 1

ρ

∂

∂ρ
ρ

∂χ

∂ρ

∣∣∣∣ψm,k

〉∣∣∣∣ +

∣∣∣∣
〈
e2Fεχψm,k,

∂χ

∂ρ

∂

∂ρ
ψm,k

〉∣∣∣∣ (59)

and, with the help of (57) and supρ0�ρ�ρ0+1{Fε(ρ)} = Fε(ρ0 + 1), we estimate∣∣∣∣
〈
e2Fεχψm,k,

∣∣∣∣ 1

ρ

∂

∂ρ
ρ

∂χ

∂ρ

∣∣∣∣ψm,k

〉∣∣∣∣ � 6 e2Fε(ρ0+1)‖ψm,k‖2 (60)

and ∣∣∣∣
〈
e2Fεχψm,k,

∂χ

∂ρ

∂

∂ρ
ψm,k

〉∣∣∣∣ � 3

2
e2Fε(ρ0+1)‖ψm,k‖

∥∥∥∥ ∂

∂ρ
ψm,k

∥∥∥∥ . (61)

Taking a sufficiently large λ > 0 in the resolvent set of h(m)
cy , the last factor in (61) is bounded

by∥∥∥∥ ∂

∂ρ
ψm,k

∥∥∥∥ �
∥∥∥∥ ∂

∂ρ

(
h(m)

cy + λ
)−1

∥∥∥∥ ‖(em,k + λ)ψm,k‖ = |em,k + λ|
∥∥∥∥ ∂

∂ρ

(
h(m)

cy + λ
)−1

∥∥∥∥ ‖ψm,k‖.
(62)

Hence, assuming that ψm,k is normed to one, upon combining (59)–(62) we arrive at

εδ‖eFεχψm,k‖ � const e2Fε(ρ0+1), (63)
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where the constant depends on ε and δ and on the respective energy and state. Inequality (54)
now follows from straightforward estimates. Moreover, since for s � ρ0 in the Agmon metric
vm,k(s) � B2ρ2/8 − (Z1 + Z2)/ρ0 − em,k , integration of the latter yields∫ ρ

ρ0

vm,k(s) ds � Bρ2

4

√
1 − 8am,k

B2ρ2
− am,kB

−1 log

(
4
√

2Bρ + 16

√
B2ρ2

8
− am,k

)
+ d0, (64)

where am,k = ρ−1
0 (Z1 + Z2) − em,k and d0 contains the constant contributions from the

lower integration boundary. This leads to the leading term of the decay as stated in the
theorem.

Physically, along the magnetic field, there is no reason for a similar strong decay of
the wavefunctions; rather, the ψm,k can be expected to show the same type of exponential
behaviour as for vanishing field. Since for large B the energies em,k become positive and thus
longitudinal classical motion unbounded, the Agmon approach does not allow to deduce the
quantum decay in the ζ variable. On the other hand, Avron et al [12] remark that such ‘normal’
decay properties follow easily from the standard Combes–Thomas method [19]. This remains
true for molecular systems, whence here we merely outline the main arguments. Starting with
the unitary group

U‖(λ)ψm,k = eiλζ ψm,k (65)

for λ ∈ R, in the correspondingly transformed Hamiltonian

h(m)
cy (λ) := U‖(λ)h(m)

cy U‖(λ)−1 (66)

only the ζ -part of the kinetic is changing, namely, into (−i∂/∂ζ − λ)2/2. Thus, obviously, by
(66) an analytic family (of type A) is defined. Setting Rm,k = {λ ∈ C||Im λ| <

√
B − 2em,k}

and using that em,k /∈ σess
(
h(m)

cy (λ)
)

if λ ∈ Rm,k , the analyticity of h(m)
cy (λ) implies the existence

of projections P(λ), analytic for λ ∈ Rm,k , such that dim(Ran P(λ)) < ∞ where the range
Ran P(λ) of P(λ) is spanned by the eigenvectors of h(m)

cy (λ) associated with the eigenvalue
em,k(λ). Moreover, P(λ) obeys U‖(λ′)P (λ)U‖(λ′)−1 = P(λ + λ′) for λ ∈ Rm,k (including
λ = 0) and all λ′ ∈ R. Hence, the prerequisites for O’Connor’s lemma (see, e.g., p 196 in
[22], or [26]) are met, and we infer that ψm,k is an analytic vector for the position operator ζ ,
i.e., exp(iλζ )ψm,k is analytic in λ for λ ∈ Rm,k , and the following theorem results.

Theorem 7.2. The eigenfunctions ψm,k of h(m)
cy with eigenvalue em,k decay exponentially in

ζ -direction, ψm,k ∈ D(e(1−ε)
√

B−2em,k |ζ |) for all ε > 0.

Whereas the transversal exponent Bρ2/4 in theorem 7.1 is certainly optimal, the exponent√
B − 2em,k of theorem 7.2 probably can be improved. Furthermore, given the decay in

L2-sense proved in these theorems, pointwise decay can be deduced by conventional regularity
(namely, C∞ away from the nuclear centres) properties of the wavefunctions.

8. Concluding remarks

In the preceding sections, by means of standard mathematical techniques, we deduced several
results for the one-electron two-centre system. If the respective property is not specific to the
presence of only a single electron, such as the positivity of the wavefunctions φm considered in
section 2, an extension to diatomic molecules with N > 1 electrons may be possible, although
not always straightforward. On the other hand, already for the one-electron system there
remain enough interesting problems still unsettled, even if attention is restricted to systems
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within the Born–Oppenheimer approximation and the nonrelativistic regime (for problems
arising in a relativistic treatment, see, e.g. [28]).

From a practical point of view, a major progress would be the rigorous confirmation of the
numerical observation [4] that the ground state energy of H [R, B, Z1, Z2] attains its minimum
for parallel configurations, i.e., for R ∧ B = 0. This also would justify that here—like in
most other theoretical studies—the focus has been on situations where the magnetic field
and the internuclear axis are parallel. Concerning extensions to nonparallel configurations,
whereas—at least for sufficiently large r⊥—the decay of bound state wavefunctions in
directions orthogonal to B is certainly Gaussian with exponent Br⊥/4, it is not clear whether
the electronic energies still behave monotonically as a function of the nuclear separation.
Monotonicity in R is definitely not a universal property of the electronic curves; since for
B = 0 most of the excited states exhibit nonmonotonic curves, this probably will be also
the case if B �= 0. Monotonicity of binding energies in B is a question not examined in our
study; for the hydrogen atom, Avron et al [12] proved that the ionization energy increases
monotonically with B. A similar behaviour can be expected for the ionization and dissociation
energies of the one-electron molecular system, with both energies asymptotically growing as
(log B)2.

Besides those applications discussed in section 6, monotonicity properties play a role in
binding and stability problems [3, 27]. In the same context, the molecular virial theorem enters
into the argumentation, so that now, with these items generalized to B �= 0, they are at disposal
for investigating stability in magnetic fields. Furthermore, in numerical calculations the virial
theorem serves as a valuable tool to asset the accuracy of the computations [18]. Finally, the
monotonicity of the energy levels in the angular momentum quantum number m demonstrated
in section 4 gives a rigorous justification of the common assumption (also employed, e.g., in
[7]) that m = 0 provides the ground state of the system.
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